Funding

Self-funded

Project code

PHBM5241024

Department

School of Medicine, Pharmacy and Biomedical Sciences

Start dates

October, February and April

Application deadline

Applications accepted all year round

Applications are invited for a self-funded, 3 year full-time or 6 year part-time PhD project.

The PhD will be based in the School of Pharmacy and Biomedical Sciences and will be supervised by Dr Murphy Wan.

The work on this project will:

  • Understand the mechanisms behind the immunomodulatory effect of bacterial exosomes
  • Explore the therapeutic potential of bacterial exosomes in human diseases

Bacterial exosomes are extracellular vesicles that are secreted by Gram-positive and Gram-negative bacteria. They contain a wide range of molecules, including proteins, lipids, and nucleic acids. In recent years, several studies have shown that bacterial exosomes play an important role in intercellular communication, host-pathogen interactions, and immune modulation.

In particular, bacterial exosomes have been shown to have an immunomodulatory effect on host immune cells. They can suppress or activate immune responses depending on the type of bacteria and the host's immune status. For example, some bacterial exosomes have been shown to inhibit T-cell proliferation and induce regulatory T cells, while others can activate macrophages and dendritic cells.

Understanding the mechanisms behind the immunomodulatory effect of bacterial exosomes is crucial for the development of new therapies for infectious and autoimmune diseases. Therefore, the aim of our research is to investigate the mechanisms underlying the immunomodulatory effect of bacterial exosome and explore the therapeutic potential of bacterial exosomes on immune cells and/or mouse models of human diseases. 

This is a multidisciplinary project which involves collaboration and interaction with experts from other fields, and the successful applicant will receive training in all relevant areas, but not limited to molecular biology, immunology, infection biology/microbiology, with an emphasis on integration of different omics technologies for in-depth investigation of disease mechanisms and discoveries of novel biomarkers that can be translated in future clinical settings.

 

Fees and funding

Visit the research subject area page for fees and funding information for this project.

Funding availability: Self-funded PhD students only. 

PhD full-time and part-time courses are eligible for the UK Government Doctoral Loan (UK and EU students only – eligibility criteria apply).

Bench fees

Some PhD projects may include additional fees – known as bench fees – for equipment and other consumables, and these will be added to your standard tuition fee. Speak to the supervisory team during your interview about any additional fees you may have to pay. Please note, bench fees are not eligible for discounts and are non-refundable.

Entry Requirements

You'll need a good first degree from an internationally recognised university (minimum upper second class or equivalent, depending on your chosen course) or a Master’s degree in biomedical sciences, immunology, microbiology OR a related area. In exceptional cases, we may consider equivalent professional experience and/or qualifications. English language proficiency at a minimum of IELTS band 6.5 with no component score below 6.0.

How to apply

We’d encourage you to contact  Dr Murphy Wan (murphy.wan@port.ac.ukto discuss your interest before you apply, quoting the project code.

When you are ready to apply, please follow the 'Apply now' link on the Pharmacy, Pharmacology and Biomedical Sciences PhD subject area page and select the link for the relevant intake. Make sure you submit a personal statement, proof of your degrees and grades, details of two referees, proof of your English language proficiency and an up-to-date CV. Our ‘How to Apply’ page offers further guidance on the PhD application process. 

When applying please quote project code:PHBM5241024